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ABSTRACT 

An approximate method is developed to analyze the deflection in beams and beam-

column by solving the differential equation for the elastic deformation of beam and 

beam-column. The analysis is performed using the central difference of finite 

difference method for the Euler-Bernoulli beam and beam-column supported on an 

elastic, nonlinear foundation with rigid or elastic discrete supports. To make a 

verification of the results, Laplace Transformation method is used to solve the 

elastic differential equation of beam and beam-column based on linear elastic 

supports and the results are compared with the finite difference method.    Two types 

of beams are selected, simply supported and fixed-fixed with five elastic supports of 

an idealized soil. In the nonlinear idealization, the division of force into many levels 

are assumed and based on these forces, the equivalent displacements are obtained 

from an assumed power law equation by using the finite difference method.  Central 

finite difference scheme has a second order is used throughout the numerical 

analysis with five nonlinear behavior of springs separated by an equal distance 

between them.   

Keywords: Finite difference method, Euler-Bernoulli beam, Laplace transformation. 
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1. INTRODUCTION 

 

Beams on an elastic foundation has been solved by many researchers and 

analytical solutions of the differential equation have been proposed [1-2]. The 

geometric stiffness matrix was formulated and derived for beams on elastic 

foundation by Eisenber et al.  [3].  Many authors used a finite element technique to 

find an approximate solution. Two-parameter elastic foundations were formulated to 

analyze beams based on exact displacement function [4]. Analysis of finite element 

beam column on elastic Winkler foundation was carried out using exact stiffness 

matrix terms [5].  Lower order of finite strip method developed for the analysis of 

soil-iteration models. At the early stage, the model was used for soil layered under 

vertical load with uniform soil properties. The change of soil properties in the 

longitudinal direction was included in the research by Cheung et al. [6] and 

Oskoorouchi et al. [7]. Mixing between finite strip method and soil spring system 

has been developed and applied to study the plate vibration responses on elastic 

foundation with different boundary conditions [8-9]. Vallabhan and Das [10] 

estimated a non-dimensional third parameter using iterative procedure to represent 

the distribution displacement of beams rested on elastic foundation.  Omurtag et al.  

[11] used a mixed-type formulation based on Gateaux differential for the derivation 

of Kirchhoff plate-elastic foundation interaction. Binesh [12] used a mesh-free 

method for the analysis of a beam on two parameter elastic foundation. Sato et al.  

[13] obtained an exact solution for beam on elastic foundation in static and free 

vibration problems based on equidistant elastic supports. Jumel et al.  [14] proposed 

a first order correction to take into account of interface elasticity and transverse 

anticlastic curvature of flexible substrate. Borak and Marcian [15] used modified 

Bettis theorem to develop an alternative analytical solution of beams on an elastic 

foundation. The calculation was based on the determine of beam’s deflection on an 

elastic foundation from the deflection of a reference beam which is topologically 

equivalent. In this paper, the nonlinear assumption of soil behavior is used to 

analyze Euler-Bernoulli elastic beam and beam-column under compression load 

rested on it.  Numerical method based on the finite difference method is used for the 

analysis of fourth-order linear ordinary differential equation of beam and beam- 

column. The constants in this equation are determined by using the boundary 

conditions of simply supported and fixed-fixed ends. In addition, closed form 
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solution based on the Laplace transformation method is used to get the results under 

the same conditions.  Numerical examples are illustrated for both elastic beam and 

beam-column on the nonlinear soil behavior and the results are showed in figures 

and tables. 

 

 

2. MODELLING OF SOIL MECHANICAL PROPERTIES AND 

ALGORITHM  

 

Throughout analysis of any foundation, soil is not a linear material and for 

modeling it as a linear material could cause a considerable error. Soil actually 

behaves as a hyperbolic curve in relationship of stress-strain [3]. Load deflection 

relationship curve might be assumed to exist, as shown in Figs. 1-5 when modelling 

the reaction of a soil foundation. In every iteration of the force level, the tangent of 

the curve is obtained which means the slope of the force-displacement curve of soil. 

In this study, this curve is obeyed according to the nonlinear behavior of soil that 

defined in Eq.  (1)  

 0.5 n
uP P    (1) 

where uP  is the ultimate soil bearing capacity of the soil in 2/kN m  and   is the 

strain of soil underneath the footing. n  is the power law variation that changes with 

the applied force and displacement. Here, the strain equals to the actual 

displacement because the length is assumed for one meter. Five nodes are idealized 

for the nonlinear soil reaction using the finite difference method to find the 

displacements. The load per unit area of foundation is plotted with displacement for 

each spring as shown in Figs 1-5. For each figure, the corresponding deflection are 

selected based on five loads chosen as 0.1, 0.25, 0.5, 0.75, and 1.0. These curves 

behavior which are represented the soil mechanical activities are working based on 

Eq. (1). The value of power n  in Eq. (1) goes to decline with increasing of load step 

from 0.1 to 1.0. The differential equation that describing the elastic deflection curve 

of Euler-Bernoulli beam-column on a nonlinear elastic foundation under the action 

of a distributed load is governed by Eq. (2) 

 
2 2 2

2 2 2
( ) ( )

d d y d y
EI P k x y w x

dx dx dx


 
   

 
  (2) 
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where ( )y x  is the deflection of the beam, E  is the modulus of elasticity of the 

material made for the beam, I  is the moment of inertia of the cross-section, P  is 

the axial load applied at the ends to the beam, ( )w x  is the applied distributed load 

and ( )k x  is the foundation modulus. In the linear analysis of foundation, ( )k x  is 

taken as a constant number while in the nonlinear foundation analysis varies in its 

values with respect to its position.  
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FIGURE 1. Load-displacement curve of soil 

at 20.10 /P kN m   
FIGURE 2. Load-displacement curve of soil 

at 20.25 /P kN m   
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FIGURE 3. Load-displacement curve of soil 

at 20.50 /P kN m   
FIGURE 4.  Load-displacement curve        of 

soil at 20.75 /P kN m   
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FIGURE 5. Load-displacement curve of soil 

at 21.0 /P kN m   

 

 

With applying finite difference scheme, Eq. (2) can be written for the elastic beam-

column on nonlinear foundation as 

 
4 4

2
2 1 1 2 1 14 6 4 ( 2 ) i i i

i i i i i i i i

P w h k y h
y y y y y y y y h

EI EI EI


                (3) 

In the case of elastic beam on nonlinear foundation can be calculated in the same 

Eq. (3) with 0P  . The second and fourth order derivatives in Eq. (2) are 

substituted by second order central difference approximation in the finite difference 

equation (Eq. (3)). The finite difference grid is used for the analysis of beam and 

beam-column rested on elastic nonlinear foundation with taking a limit number of 

idealized springs. The distances between the springs are taken an equal and the axial 

load as a compression load at the ends. In the conventional finite difference analysis, 

the geometric and boundary conditions of the equilibrium differential equation are 

considered. The condition that y  and y are zero at station i  is approximated using 

Eq. (4) and Eq. (5) respectively, as 

 1 1 0i iy y     (4) 

 1 12 0i i iy y y     (5) 

Figure 6 shows the simply supported beam-column on five nonlinear idealized 

springs with equal distances between them. 
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FIGURE 6. Simply supported beam-column rested on five springs. 

The algorithm processes in this study are followed as the following steps: In the first 

load step ( 0.1P ) with the constant last strain ( 0.01 ), the power n  is 

determined to equal 0.849485 according to the Eq. (1) with taking 10.0uP  . After 

then, the stiffness ( k ) is equal to the slope of the load-deflection curve by assuming 

the deflection equals to the strain for idealized springs. Then the k  values for the 

five springs are approximately linear for this step and equal to 10.0 because the 

exact values in this step can't be determined without present the springs deflection. 

By applying the finite difference technique (Eq. (3)), values of the springs deflection 

can be determined based on the constant value of stiffness ( 10.0k  ) for all 

assumed nodes. For the second step ( 0.25P ), the value of power n  can be 

determined with constant final strain ( 0.01 ). In this step, with determining the 

values of deflections from the first step, the new stiffness ( k ) for all five nodes can 

be calculated by substituting the deflection values in the derivative of Eq. (1) 

( 0.1505154.24743/ ) which considers the slope of the load-deflection curve then the 

corrected deflections can be evaluated by applying the same equation of finite 

difference method. For the third step ( 0.5P ), the same procedures are applied 

from calculating the power n  and evaluating the stiffness based on the second step 

deflections to reach the new corrected deflections. The processes are repeated for the 

fourth step ( 0.75P ) and fifth step ( 1.0P ). The observation of this algorithm is 

the load-deflection curve goes from linear at the first step to nonlinear behavior 

ending with the power 0.349485n . The soil beneath the beam or beam-column 

behaves actually according to the mentioned five steps. The reason to stop of these 

processes at the last step is the small difference between the values of numerical 

method (finite difference method) and the exact solution (Laplace Transformation). 
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2.1 LAPLACE TRANSFORMATION METHOD 

 

In this section, the Laplace transformation method is used to find the deflections 

of beam rested on linear elastic foundation. To apply this method, the basic principle 

is defined as ( )F s  be a given function. The Laplace transform ( )F s  of function 

( )f t  is defined by 

 
0

( ) ( ) , 0sxf x e f x dx s


 L      (6) 

By rearranging the fourth order differential equation in Eq. (2), the equation can be 

written as

(4) 4 2 ( )
( ) 4 ( ) ( )

w x
y x y x y x

EI
       (7) 

where, 44 /k EI   ( k  is the foundation modulus) and 2 /P EI   ( P  is the axial 

applied load at the beam ends). By taking the Laplace transformation for the fourth 

order differential equation in Eq. (7) under constant value of the distributed load 

( )w x , the equation becomes 

   
 

2 2

4 4 2 2

(0) (0) (0) (0)
( )

( ) 4

EIs s sy y sy y w
f s

EIs s s

       


  
   (8) 

For simply supported beam rested on elastic foundation under axial load at the ends 

of the beam, the boundary conditions at the ends which satisfying the Eq. (8) are 

deflection and moment equal to zero ( (0) ( ) (0) ( ) 0y y l y y l      ) and Eq. (8) 

can be written as 

  
 

2 2
2 1

4 2 2 4
( )

4

w EIs c c s
f s

EIs s s

  


   
     (9) 
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where 1 (0)c y   and 2 (0)c y  . In addition, by applying the boundary conditions 

for the fixed-fixed beam with axial load at the ends with taking the deflection and 

slope at the ends equal to zero ( (0) ( ) (0) ( ) 0y y l y y l     ), Eq. (8) can be 

written as 

 
 

2 1

4 2 2 4
( )

4

w EIs c c s
f s

EIs s s

 


   
     (10) 

 

where 1 (0)c y  and 2 (0)c y  . 

 

      3. NUMERICAL EXAMPLES 

 

The aim of this section is to validate the solution procedure for the 

determination of the beam deflection rested on elastic foundation. To do so, 

several examples of the analysis of beam columns are illustrated based on the 

analytical and numerical solutions. The first example explains beam ( 0.0 ) 

and beam-column ( 1.0 ) with simply supported on elastic foundations while 

the second one is treating with beam and beam-column with fixed ends. For the 

both examples, the parameters are selected as a following data: 1.0k   , 2.0k   

, 1.0EI   , 10.0uP   and 1.0L . The constants for simply supported and 

fixed-fixed respectively are 1 0.0412493c   , 2 0.0412493c   and 

1 0.0831848c   , 2 0.499307c  . These constants are used for Laplace 

transformation method in Eqs. (9) and (10). The results in the Figs. 7-14 show 

deflection by using analytical method for both beam and beam-column in the 

case of simply supported and fixed-fixed conditions. Tables (1) and (2) show the 

numerical deflection of beam and beam-column on elastic foundation for both 

simply supported and fixed-fixed, respectively based on central difference of 

finite difference method. Tables (3) and (4) represent stiffness values and 

corresponding deflection which should be used in the tangent equation at each 

level for simply supported beam. In addition, tables (5) and (6) show the 

stiffness values and corresponding deflection for fixed-fixed beam rested on 

nonlinear foundation, respectively. 
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TABLE 1. 

Numerical deflection of simply supported beam and beam-column on elastic foundation ( m ). 

 

Divided length, m 
Deflection 

1, 0k    

Deflection 

2, 0k    

Deflection 

1, 1k    

Deflection 

2, 1k    

0.0 0.000000 0.000000 0.000000 0.000000 

1/6 0.006680 0.006611 0.007437 0.007351 

2/6 0.011451 0.011330 0.012760 0.012611 

3/6 0.013168 0.013029 0.014679 0.014506 

4/6 0.011451 0.011330 0.012760 0.012611 

5/6 0.006680 0.006611 0.007437 0.007351 

6/6 0.000000 0.000000 0.000000 0.000000 

 
TABLE 2. 

Numerical deflection of fixed-fixed beam and beam-column on elastic foundation ( m ). 

Divided length, 

m 

Deflection 

1, 0k    

Deflection 

2, 0k    

Deflection 

1, 1k    

Deflection 

2, 1k    

0.0 0.000000 0.000000 0.000000 0.000000 

1/6 0.001123 0.001120 0.001148 0.001145 

2/6 0.002566 0.002559 0.002634 0.002627 

3/6 0.003175 0.003167 0.003263 0.003255 

4/6 0.002566 0.002559 0.002634 0.002627 

5/6 0.001123 0.001120 0.001148 0.001145 

6/6 0.000000 0.000000 0.000000 0.000000 
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FIGURE 7. Analytical deflection of simply 

supported beam on linear elastic foundation with 

1k   and 0 . 

FIGURE 8. Analytical deflection of simply 

supported beam on linear elastic foundation with 

2k   and 0 . 
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FIGURE 9. Analytical deflection of simply 

supported beam-column on linear elastic 

foundation with 1k   and 1 . 

FIGURE 10. Analytical deflection of simply 

supported beam-column on linear elastic 

foundation with 2k   and 1 . 
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FIGURE 11. Analytical deflection of fixed-fixed beam 

on linear elastic foundation with 1k   and 0 . 

FIGURE 12. Analytical deflection of fixed-fixed beam 

on linear elastic foundation with 2k   and 0 . 
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FIGURE 13. Analytical deflection of fixed-fixed beam 

on linear elastic foundation with 1k   and 1 . 

FIGURE 14. Analytical deflection of fixed-fixed beam 

on linear elastic foundation with 2k   and 1 . 

 

 
TABLE 3. 

Stiffness of load per unit area and deflection curve for simply supported beam ( 2/kN m ). 

Beam length, m  1k  2k  3k  4k  5k  

0.10 10.0000 43.2154 71.7068 60.8176 70.5617 

0.25 10.0000 35.8092 54.8407 44.3825 49.7651 

0.5 10.0000 34.1072 51.1660 40.9110 45.4655 

0.75 10.0000 35.8092 54.8407 44.3825 49.7651 

1.00 10.0000 43.2154 71.7068 60.8176 70.5617 

 

 

TABLE 4. 

Deflection of simply-supported beam rested on nonlinear foundation for five iterations ( m ). 

Beam length, m  1u  
2u  

3u  
4u  

5u  

0.10 0.000610 0.001216 0.003161 0.003396 0.004345 

0.25 0.001045 0.002078 0.005401 0.005808 0.007432 

0.5 0.001201 0.002387 0.006204 0.006674 0.008540 

0.75 0.001045 0.002078 0.005401 0.005808 0.007432 

1.00 0.000610 0.001216 0.003161 0.003396 0.004345 
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TABLE 5. 

Stiffness of load per unit area and deflection curve for fixed-fixed beam ( 2/kN m ). 

Beam length, m  1k  
2k  

3k  
4k  

5k  

0.10 10.0000 16.7481 57.3219 110.6000 145.3530 

0.25 10.0000 14.7920 42.9680 73.3240 89.7250 

0.5 10.0000 14.3261 39.8927 65.9587 79.2439 

0.75 10.0000 14.7920 42.9680 73.3240 89.7250 

1.00 10.0000 16.7481 57.3219 110.6000 145.3530 

 

 

TABLE 6. 

Deflection of fixed-fixed beam rested on nonlinear foundation for five iterations ( m ). 

Beam length, m  1u  
2u  

3u  
4u  

5u  

0.10 0.000110 0.000272 0.000511 0.000718 0.000925 

0.25 0.000251 0.000620 0.001162 0.001632 0.002102 

0.5 0.000310 0.000767 0.001437 0.002016 0.002596 

0.75 0.000251 0.000620 0.001162 0.001632 0.002102 

1.00 0.000110 0.000272 0.000511 0.000718 0.000925 

 

 

 

 

 

4.  CONCLUSIONS  

 

In this study, a finite difference method for the analysis of beam and beam-column 

resting on nonlinear elastic foundation is formulated based on the iterative 

procedure. In addition, to control the accuracy of the numerical method, exact 

solution for beam and beam-column of Euler-Bernoulli on a nonlinear elastic 

foundation is investigated based on the proposed formula in Eq. (1). The nonlinear 

load-displacement curve of the soil is plotted at each of the load step with 

determining the power n  at each of load level. With applying the finite difference 

procedures at each load level, the displacements corresponding to it are determined 

then used in Eq. (3) to find the next level displacements under the equal of point 
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load at each of the five interior nodes. The iterative procedure converges rapidly to 

the solution after the fifth trail because the value of the power n  decreases with the 

advance steps and the curve approaches to the ideal curve path of soil. The final 

strain of the soil behavior at all levels is selected as a constant value ( 0.01  ) and 

the value of the power ( n ) is determined at each load level. Accuracy is controlled 

by using the Laplace Transformation method with the inverse Eq. (10) which refer 

to the closed form solution. Two examples are solved for both beam and beam-

column based on Euler-Bernoulli theory which show the characteristic features for 

applying the both methods. The analytical method using Laplace transformation is 

idealized in the figures with evaluating maximum displacement for all cases. It is 

shown that, for a twice stiffness value of beam and beam-column, the foundation 

deflections are reduced for simply supported and fixed-fixed ends. On the other 

hand, the deflections increase in the case of beam-column which refers to presence 

of axial load ( 1 ) than in the case of beam only ( 0 ). Moreover, the deflection 

of foundation rested on nonlinear soil behavior and the effect of compression axial 

with simply supported ends is greater than that for the fixed-fixed ends.  
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