
4th International Engineering Conference on Developments in Civil & Computer Engineering 

Applications 2018 ( ISSN 2409-6997) 

 
 

150 
 

AN APPROACH FOR DESCRIPTION OF ELASTIC 

PARAMETERS OF CROSS-ANISOTROPIC SATURATED 

SOILS  

Ahmed Mohammed Hasan 

Salahaddin University-Erbil  

ahmed.hasan@su.edu.krd or ahmedunsat2014@gmail.com 

doi:10.23918/iec2018.12 

ABSTRACT 

The processes of deposition and consolidation in natural soils or compaction in fill 

materials will typically produce soils that are initially cross-anisotropic (also known 

as transversely isotropic or orthotropic) in terms of both small strain elastic 

behaviour and large strain plastic behaviour. For small strain elastic behaviour, five 

elastic parameters are required to fully describe cross-anisotropic soils such as two 

Young’s moduli (Ev in vertical direction and Eh in horizontal direction), two 

Poisson’s ratios (vvh horizontal strain due to vertical strain and vhh horizontal strain 

due to horizontal strain) and an independent shear modulus such as Ghv (a shear 

wave horizontally transmitted with vertically polarised). These five elastic 

parameters have been expressed in different fashions in the literature. In this paper 

results from derivations showed that it is possible to express the elastic parameters 

for cross-anisotropic soils in a different way than that expressed in the literature 

using as a function of independent measurements of two shear moduli and two 

constrained moduli from three pairs of bender/extender elements BEEs fitted on a 

cross-anisotropic soil sample in a triaxial apparatus and measuring or assuming the 

value of vhh using combination of triaxial testing system and bender/extender 

element testing system, 

Keywords: elastic parameters, cross-anisotropic soils, bender/extender elements, 

shear and constrained moduli. 
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1. INTRODUCTION 

 

For a shear wave, the direction of motion of the soil particles (the wave 

polarisation) is perpendicular to the direction of wave transmission, as shown in 

Figure 1 [1]. Hence, different shear wave velocities can be measured, depending 

upon the direction of the wave transmission and the direction of the wave 

polarisation, e.g. Vsvh , Vshv and Vshh (see Figure 2 [2,3]), where the second subscript 

gives the wave transmission direction, the third subscript gives the wave polarisation 

direction and v and h represent vertical and horizontal respectively. For compression 

waves, the direction of particle motion (wave polarisation) is the same as the 

direction of wave transmission (see, Figure 1). By transmitting compression waves 

in vertical and horizontal directions, compression waves velocities Vpv and Vph can 

be measured (see Figure 2).  

The importance of anisotropy of very small strain behaviour has been investigated 

by many authors [4-7]. They showed, using numerical analysis, that including 

anisotropy of G during the prediction of deformations of tunnelling in stiff clays 

(such as London clay) appeared to play a vital role.  

 

 

FIGURE 1.  Compression and shear wave travel: (a) Compression wave with horizontal transmission, 

Vph (b) Shear wave with horizontal transmission and vertical polarisation, Vshv (c) Shear wave with 

horizontal transmission and horizontal polarisation, Vshh [1] 
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FIGURE 2.  Multi-directional pairs of BEEs fitted on a triaxial soil sample [2,3] 

 

This anisotropy of soil fabric can evolve during plastic straining, leading to changes 

in the anisotropy of mechanical behaviour. These changes of anisotropy caused by 

changes of soil fabric are therefore termed strain induced anisotropy [8]. The 5 

independent elastic constants of cross-anisotropic soils have been expressed using 

different techniques in the literature. For example, two of them are presented here. 

Stokoe et al. [9] and Fioravante & Cappoferri [10] showed that the 5 independent 

elastic constants of cross-anisotropic soils could be measured with bender/extender 

elements if an additional extender element was used to determine a constrained 

modulus M in an oblique direction. Alternatively, Pennington [11] showed how all 5 

independent constants could be determined by combining bender element testing (to 

measure Ghv and Ghh) with local strain measurement on triaxial samples (to measure 

Ev, Eh and vvh). This does, however, have the drawback of combining two different 

types of measurement (at two different strain amplitudes). The main objective of this 

paper is to express the elastic parameters for cross-anisotropic saturated soils in a 

different fashion than those have been presented in the literature. The current 

expressions use a combination of triaxial testing system and bender/extender 

element testing system whereas other expressions employ, for example, either a 

triaxial testing system with local strain measurement on triaxial samples [11] or a 

cubical calibration chamber with geophone systems [9]. It means that additional 

equipment (i. e. bender/extender element testing system) in the geotechnical 
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laboratory can be used to measure independent elastic constants and then express 

them.  

 

1. BENDER/EXTENDER  ELEMENT TESTING 

 

Bender/extender elements are piezoelectric transducers that can transmit and 

receive shear waves and compression waves in order to determine shear wave 

velocity Vs and compression wave velocity Vp . These wave velocities can then be 

used to determine very small strain elastic values of shear modulus G and 

constrained modulus M as follows Biot [12].: 

 
2

sVG   (1) 

 
2
pVM   (2) 

 

where ρ is the bulk density of the soil. In all cases, the wave velocity V (i.e. Vs or Vp) 

is determined from a measurement of travel time t and the known tip-to-tip distance 

Ltt  between transmitter and receiver elements [13]: 

 
t

L
V tt  (3) 

 

2. ELASTICITY THEORY 

 

3.1 ELASTIC MODULI OF ISOTROPIC SATURATED SOILS 

 

At very small strains, the behaviour of saturated soils can be treated as elastic. If 

the soil is isotropic, the elastic behaviour can be represented by two independent 

elastic properties, which are normally selected either as Young’s modulus E and 

Poisson’s ratio ν or as shear modulus G and bulk modulus K [14], where: 

 
)1(2 v

E
G


  (4) 

 
)21(3 v

E
K


  (5) 

 



4th International Engineering Conference on Developments in Civil & Computer Engineering 

Applications 2018 ( ISSN 2409-6997) 

 
 

154 
 

For saturated soil, it can be helpful to choose to express the elastic properties in 

terms of G and K (rather than E and ν ), because shear modulus G should be the 

same for both drained and undrained behaviour, and K is often considered as infinite 

for undrained behaviour. For linear elastic behaviour, G and K are constants, but 

soils often show non-linear elastic behaviour, with G and K varying with stress, 

strain or soil state.  

Constrained modulus M is the elastic modulus (applied normal stress increment 

divided by normal strain increment in the same direction) for a condition where 

strain is prevented in both perpendicular directions. For an isotropic elastic soil, M 

can be expressed in terms of E and ν , or in terms of G and K [14]:  

 
)1)(21(

)1(

vv

vE
M




  (6) 

 

 GKM
3

4
  (7) 

 

Equations (1) and (2) show that the shear wave velocity Vs and compression wave 

velocity Vp measured in bender/extender elements BEE tests depend upon G 

(Equation 4) and M (Equation 6 or 7), respectively. 

 

3.2 ELASTIC MODULI OF ANISOTROPIC SATURATED SOILS 

 

Love [15] showed that thermodynamic considerations mean that the stiffness 

matrix (and compliance matrix) of an elastic material must be symmetric. This 

means that the most general form of linear anisotropic elastic behaviour involves 21 

(rather than 36) independent elastic constants, for example see Graham and 

Houlsby[16]. For a cross-anisotropic elastic material, with the same properties in all 

horizontal directions but different properties in vertical directions, symmetry of the 

stiffness and compliance matrices implies that [15]:  

 
v

vh

h

hv

E

v

E

v
  (8) 
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where Eh and Ev are the Young’s moduli in horizontal and vertical directions 

respectively, νhv is the Poisson’s ratio giving the ratio of vertical to horizontal strain 

increment caused by a uniaxial stress increment in the horizontal direction, and νvh is 

the Poisson’s ratio giving the ratio of horizontal to vertical strain increment caused 

by a uniaxial stress increment in the vertical direction. Thermodynamic 

considerations also imply that for this cross-anisotropic material, the shear moduli 

Gvh , Ghv and Ghh are given by [15]:  

 vhhv GG   (9) 

 
)1(2 hh

h
hh

v

E
G


  (10) 

 

This means that, as shown by Graham & Houlsby [14], the behaviour of a cross-

anisotropic elastic material involves only 5 independent elastic constants, which can 

be taken as Ev , Eh , νvh , νhh and Gvh. The stress-strain relations of this cross-

anisotropic elastic material can then be expressed as [15]: 
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 (11) 

 

For the conditions of the triaxial test, Equation (11) gives: 
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h
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where x and y are horizontal directions, z is the vertical direction, ∆𝜎𝑥𝑥
′  , ∆𝜎𝑦𝑦

′   and 

∆𝜎𝑧𝑧
′   are normal stress increments, ∆𝜀𝑥𝑥 , ∆𝜀𝑦𝑦 and ∆𝜀𝑧𝑧 are corresponding normal 

strain increments, ∆𝜏𝑦𝑧 , ∆𝜏𝑧𝑥 and ∆𝜏𝑥𝑦 are shear stress increments and ∆𝛾𝑥𝑦 , ∆𝛾𝑦𝑧 

and ∆𝛾𝑧𝑥 are corresponding shear strain increments.  

 

3. DERIVATION OF EXPRESSIONS FOR  EH , EV  AND  VVH 

4.1 EXPRESSIONS FOR  Mv  

 

If a stress increment ∆σv
'  is applied in a vertical direction, to produce a 

corresponding strain increment ∆εv in that direction, while strains are prevented in 

the horizontal direction (i.e. Δεh=0). Equation 13 can be re-arranged to give: 
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By inserting Equation 14 into Equation 12: 

 
'
v

)1(

21
 












hh

vh

v

h

v

vh

v

v
v

v

E

E

E

v

E
 (15) 

For this situation of no horizontal strain, the vertical constrained modulus Mv is 

defined by [17]:  
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Comparing Equation 15 and 16: 
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This simplifies to the standard result for the constrained modulus of an isotropic 

elastic material (see Equation 6) if  Ev = Eh =E  and  νvh = νhh = ν . 
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4.2 EXPRESSIONS FOR  Mh  

 

Consider a situation where a stress increment Δσ′xx is applied in one horizontal 

direction (x), to produce a corresponding strain increment (Δεxx) in that direction, 

while strains are prevented in the other horizontal direction (Δεyy=0) and in the 

vertical direction (Δεzz=0). Equation 11 now gives:  
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Solving the two simultaneous equations of Equations 19 and 20 for Δσ′y and Δσ′z  

gives: 
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Inserting for Δσ′y  and Δσ′z  from Equations 21 and 22 in Equation 18 and re-

arranging: 
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For this situation of zero strain in the y (horizontal) and z (vertical) directions, the 

horizontal constrained modulus Mh is defined by: 
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Comparing Equations 23 and 24: 
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This simplifies to the standard result for the constrained modulus of an isotropic 

elastic material (Equation 6) if Ev = Eh =E and νvh = νhh = ν. 

 

4.3 EXPRESSIONS FOR  Eh , Ev  AND  vvh  

 

One of the five independent elastic moduli of a cross-anisotropic soil (Ghv = Ghv) 

can be measured directly from one of the measurements provided by the standard 

arrangement of three BEE pairs. None of the other 4 independent elastic moduli of a 

cross-anisotropic soil (Eh , Ev , νvh and νhh ) can be determined from this standard 

arrangement of three BEE pairs, however if the value of one of them (say νhh ) is 

known or assumed, then it is possible to determine the values of the other three (say 

Eh , Ev and νvh) from the other three parameters measured by the standard 

arrangement of three BEE pairs (Ghh , Mv and Mh). 

Re-arranging Equation 10 gives: 

 hhhhh GvE )1(2   (26) 

 

Inserting Equation 26 into Equation 17 and re-arranging: 

 hhhhhvhvvhhh GMvvEEMv )1(4))(1( 2   (27) 

 

 

Similarly, inserting Equation 26 into Equation 25: 

 hhhhhhhvhvhhhhh GGMvvEGMv ))(1(4]2)1[( 2   (28) 
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If Ghh , Mv and Mh are known, and νhh is either known or assumed, Equations 28 and 

29 form two simultaneous equations in 2 unknowns ( Ev and νvh ). Solving: 
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Equations 26, 29 and 30 provide expressions for the independent elastic moduli Eh , 

Ev and νvh in terms of three of the moduli measured by the standard arrangement of 

three BEE pairs (Ghh , Mv and Mh) and the final independent elastic modulus νhh , the 

value of which must be either known independently or assumed.  

It is clear that BEE tests using the conventional arrangement of three pairs of BEEs 

(one transmitting vertically and two transmitting horizontally) provide only 4  

independent measurements and hence cannot be used to determine all 5 independent 

elastic constants for a cross-anisotropic soil. 

 

4. CONCLUSION 

 

Based on the preceding derivations, it can be concluded that it is possible to use a 

combination of triaxial testing system and three pairs of bender/extender elements 

BEEs fitted on a cross-anisotropic soil sample, to express elastic parameters for 

cross-anisotropic soils in a different fashion than those have been expressed in the 

literature. Expressions for the independent elastic moduli Eh , Ev and νvh are derived 

in terms of three of the moduli measured by the standard arrangement of three BEE 

pairs (Ghh , Mv and Mh) and the final independent elastic modulus νhh , the value of 

which must be either known independently or assumed. 
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